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LETTERS TO THE EDITORS 

Comment on the Model for Isothermal Oscillations of Ethylene 
Oxidation on Platinum 

INTRODUCTION 

Vayenas et al. (1) have recently proposed 
a model to explain the occurrence of limit 
cycles during the oxidation of ethylene on a 
platinum catalyst, which was reported in an 
earlier paper (2). In their experimental 
studies, the activity of oxygen on the,cata- 
lyst surface is monitored by solid electro- 
lyte potentiometry (SEP) and limit cycles 
are found to occur only over a well-defined 
range of surface oxygen activity. From this 
and other experimental observations, they 
postulate the existence of a second site type 
on which a surface platinum oxide PtO, is 
formed, in addition to a first site type which 
produces reactive dissociatively chemi- 
sorbed oxygen. The thermodynamic stabil- 
ity of this oxide is dependent on the ratio of 
the reactant partial pressures POZ/PEt, and it 
is this stability characteristic which pro- 
vides a switching mechanism that is the 
basis for the oscillations. The resulting 
model equations are then shown to produce 
oscillations that resemble the experimental 
data. Frequency dependence on inlet 
ethylene/oxygen ratio N, and residence 
time 8 from the model are shown to be in 
satisfactory agreement with the experimen- 
tal data. 

While we agree with the authors that cat- 
alytic activity variations due to the thermo- 
dynamic stability of a new phase may be 
the key mechanism for oscillations in their 
system and other oxidation reactions on no- 
ble metals, we have discovered that their 
mathematical model does not actually pro- 
duce observable limit cycles. Consequently 
the oscillations they reported are purely nu- 
merical illusions. 

DISCUSSION 

The relevant governing equations are 
Eqs. (22)-(25) of Ref. (I), and their cor- 
rected version (a number of typographical 
errors occur in the original set) are as fol- 
lows: 

c& = 1 - x1 - ml-d1 - 4) - W2x2~1, 

i2 = N3 - x2 - Npx.& - aNqx2t12, 

N5bl = NIxA 1 - 0,) - Nzx,B, 
- cl- dwl(i - e,), 

Ned2 = (1 - 4 N,&( 1 - 8,) - 6czN4x2e2, 
(1) 

where 

ff=o if x,/x2 > K”:(T), 
= 1 if x1/x2 < K”:(T). (2) 

We shall denote Eq. (1) by the vector nota- 
tion: 

jl = f. (3) 

Let the unit normal of the stability surface 
defined by x1/x2 = K* in the (x, 0) phase 
space be denoted n^. This unit vector is 
defined to point to the “right” of the sur- 
face in the direction of decreasing x1. Con- 
sequently, 

1 ;: 
n” = (1 + K*2)1/2 0 

0 
* (4) 

0 

Now according to the model, as soon as the 
system trajectory crosses the stability sur- 
face from x1/x2 less than K” to the other 
side (in the direction of -n^), (Y instanta- 
neously switches from 1 to 0. Thus if 
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f-ii>0 for o! = 0 (5) ditions Cl and C2 to be satisfied, our nu- 

in the “left” neighborhood of the stability 
merical results have shown that finite oscil- 

surface, then the system trajectory can 
lations do not occur on either side of the 

spend only an infinitesimal amount of time 
stability surface. This fact can be explained 

on the (r = 0 side of the stability surface 
by noting first that due to the magnitude of 

before it is sent back to the cr = 1 side. 
NI, we have found that the system always 

Since the numerical results of Vayenas et 
satisfies the inequality 

al. (1) claim that the oscillations are almost f*h < 0 force = 1 (8) 
entirely in the a! = 0 region, confirmation of 
inequality (5) is sufficient to refute their 

in the immediate “right” neighborhood of 

results. 
the stability surface. Consequently, when 

Setting a! to zero, substituting Eqs. (1) 
both inequalities (5) and (8) are ture, the 

and (4) into expression (5) and setting x1 = 
oscillations are then restricted to the stabil- 

K*xCX2, one obtains: 
ity surface with zero amplitude in x1 and x, 
and zero period, thus the limit cycle is an 

f* ii = (l + ;,,)l,, [(-1 + PN,) 
infinitesimally small one which is, in es- 
sence, a locally stable steady state. These 

+ NZX&(Q - K”) facts are verified in the next section. 

+ +Z(l - &)I. (6) 
NUMERICAL RESULTS 

In the range of temperatures studied (200- 
400°C), K* never exceeds 9. Moreover 0, is 

Our explanation for the numerical results 

restricted between 1 and 0, which must be 
reported by Vayenas et al. (I ) is that in their 

true physically as well as because the sys- 
Euler numerical scheme, large time step 

tem trajectories of Eq. (1) can be mathe- 
sizes were chosen such that the trajectory 

matically shown to be limited in this range 
marched deep into the (r = 0 side in one 

of 0, if it begins within the same range. 
single step. Hence an observed oscillation 

Consequently the last two terms within the 
cycle actually consists of this single step 

square brackets in Eq. (6) are both positive, 
and the return path of the system trajec- 

and thus a sufficient condition for inequality 
tory. This is clearly a numerical aberration 

(5) to hold is: 
(since how “deep” will always depend on 
the step size chosen) and explains the 

K”N, > 1. (7) difficulty the authors encountered in the use 

However, inequality (7) violates the first of 
of the Runge-Kutta method (2). Our own 

the following two conditions claimed by 
attempt to employ the IBM IMSL integra- 
tion routine DGEAR (in which step sizes 

Vayenas et al. to be sufficient conditions 
for model-predicted oscillations, namely, 

are automatically varied as required) failed 
to produce any oscillations. 

Cl: $< N,< l/K”. More importantly, if the Euler scheme is 

C2: The steady state of the system, Eqs. used, the amplitudes and the period should 

(1) (which depends on N,, N2, N3) reduce with decreasing step size. This is 

lies below the oxide stability surface confirmed in Table 1, where the results of 

Xl = K”x,. integrating Eq. (1) with the given parameter 
values are presented. (Vayenas et al. did 

Consequently the determination of the sign not give the actual parameter values used in 
of f * ri in Eq. (6) requires consideration of their integrations. Representative values 
all the terms, and in general no a priori are thus chosen for this study.) These pa- 
determination is evident. Nevertheless, rameter values satisfy the sufficient condi- 
even for Parameter values that enable con- _~~~_~ =~~~~~~.~.~ tions of Vayenas et al. for oscillations (con- 
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TABLE 1 

Dependence of Amplitude and Period on Step Size 
of an Euler Numerical Scheme. N, = NP = NS = 1, 

N,=N,=200,NB=Ns=0.1,K*=0.6 

Step size 
(X 105) 

Amplitude 
Period 

Xl X2 

10.0 0.0029 0.0151 0.16 
5.0 0.0006 0.0063 0.07 
2.5 0.0002 0.0032 0.05 
1.0 0. 0.001 0.04 

ditions Cl and C2). Note from Table 1 that 
both amplitude and period approach zero 
with decreasing step size, confirming our 
speculation of an infinitesimal limit cycle. 
Finite oscillations are never observed in 
our numerical study with numerous param- 
eter values. The frequency dependence on 
N3 and 8 reported in the paper must then be 
considered meaningless. 

CONCLUSION 

We have demonstrated that the finite os- 
cillations produced by the Vayenas et al. 
model are invalid. Modification of the 
present model is necessary before observ- 
able limit cycles can be simulated. 

Another point that merits mentioning is 
the fact that according to an apparent infer- 
ence of the Vayenas et al. model, even 
when NS is larger than l/K*, violating con- 

dition Cl, oscillations can still occur if the 
initial conditions are chosen such that they 
lie to the left of the stability surface (differ- 
ent from the side on which the steady states 
are located). This is never verified experi- 
mentally, even though such experiments 
seem easy to carry out. Moreover, since 
these conditions satisfy inequality (7), fmite 
oscillations can never occur and the system 
is actually “stuck” to the stability surface 
at large time in an infinitesimal limit cycle if 
it starts from the appropriate side. Since 
this kind of limit cycle resembles steady 
states, the system should have, in effect, 
two steady states depending on the initial 
conditions (which side it starts from). This 
is verified in our numerical studies. How- 
ever, such a phenomenon of steady-state 
multiplicity is also never observed experi- 
mentally, casting further doubt on the va- 
lidity of the model. 
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